10.1 Encryption in Cloud Computing

10.1. Encryption

Data, by default, is coded in a readable format known as plaintext. When transmitted over a network, plaintext is vulnerable to unauthorized and potentially malicious access. The encryption mechanism is a digital coding system dedicated to preserving the confidentiality and integrity of data. It is used for encoding plaintext data into a protected and unreadable format.
Encryption technology commonly relies on a standardized algorithm called a cipher to transform original plaintext data into encrypted data, referred to as ciphertext. Access to ciphertext does not divulge the original plaintext data, apart from some forms of metadata, such as message length and creation date. When encryption is applied to plaintext data, the data is paired with a string of characters called an encryption key, a secret message that is established by and shared among authorized parties. The encryption key is used to decrypt the ciphertext back into its original plaintext format.
The encryption mechanism can help counter the traffic eavesdropping, malicious intermediary, insufficient authorization, and overlapping trust boundaries security threats. For example, malicious service agents that attempt traffic eavesdropping are unable to decrypt messages in transit if they do not have the encryption key (Figure 10.1).

Figure 10.1. A malicious service agent is unable to retrieve data from an encrypted message. The retrieval attempt may furthermore be revealed to the cloud service consumer. (Note the use of the lock symbol to indicate that a security mechanism has been applied to the message contents.)
There are two common forms of encryption known as symmetric encryption and asymmetric encryption.
Symmetric Encryption
Symmetric encryption uses the same key for both encryption and decryption, both of which are performed by authorized parties that use the one shared key. Also known as secret key cryptography, messages that are encrypted with a specific key can be decrypted by only that same key. Parties that rightfully decrypt the data are provided with evidence that the original encryption was performed by parties that rightfully possess the key. A basic authentication check is always performed, because only authorized parties that own the key can create messages. This maintains and verifies data confidentiality. Note that symmetrical encryption does not have the characteristic of non-repudiation, since determining exactly which party performed the message encryption or decryption is not possible if more than one party is in possession of the key.
Asymmetric Encryption
Asymmetric encryption relies on the use of two different keys, namely a private key and a public key. With asymmetric encryption (which is also referred to as public key cryptography), the private key is known only to its owner while the public key is commonly available. A document that was encrypted with a private key can only be correctly decrypted with the corresponding public key. Conversely, a document that was encrypted with a public key can be decrypted only using its private key counterpart. As a result of two different keys being used instead of just the one, asymmetric encryption is almost always computationally slower than symmetric encryption.
The level of security that is achieved is dictated by whether a private key or public key was used to encrypt the plaintext data. As every asymmetrically encrypted message has its own private-public key pair, messages that were encrypted with a private key can be correctly decrypted by any party with the corresponding public key. This method of encryption does not offer any confidentiality protection, even though successful decryption proves that the text was encrypted by the rightful public key owner. Private key encryption therefore offers integrity protection in addition to authenticity and non-repudiation. A message that was encrypted with a public key can only be decrypted by the rightful private key owner, which provides confidentiality protection. However, any party that has the public key can generate the ciphertext, meaning this method provides neither message integrity nor authenticity protection due to the communal nature of the public key.
Cloud computing concept Book Link
CLOUDCOMPUTING THEORY PLAYLIST
CLOUD COMPUTING PRACTICAL PLAYLIST
Subscribe the Channel Link
IF any #Query or #Doubt #DM on #Instagram :- #bansode_ajay_2102
#bansode_tech_solution

Comments

Popular posts from this blog

Load Data From Excel To Grid View in Asp.net C#

Advance Web Programming | TYIT | Mumbai University | Practical 1A | Product of 4 Value

10.5. Identity and Access Management (IAM) in Cloud Computing